QUANTUM COMPUTERS

 




For most of our history, human technology consisted of our brains, fire, and sharp sticks while fire and sharp sticks became power plants and nuclear weapons. The biggest upgrade has happened to our brains. Since the 1960s the power of our brain machines has kept growing exponentially allowing computers to get smaller and more powerful at the same time. But this process is about to meet its physical limits. Computer parts are approaching the size of an atom. To understand why this is a problem, we have to clear up some basics.

A computer is made up of very simple components doing some simple things like representing data, the means of processing it, and controlling the mechanisms. Computer chips contain modules, logic gates, and transistors. A transistor is the simplest form of a data processor in computers, basically, a switch that can either block or open the way for information coming through. This information is made up of bits that can be either set to 0 or 1. A combination of several bits is used to represent more complex information. Transistors are combined to create logic gates which still do very simple stuff. For example, an AND gate sends an output of 1 if all of its inputs are 1, and an output of 0 otherwise. A combination of logic gates finally forms meaningful modules, say for adding two numbers, once you can add you can also multiply, and once you multiply you can basically do anything since all basic operations are literally simpler than first-grade math. You can imagine a computer as a group of 7-years-olds answering really basic math questions. A large enough bunch of them cloud compute anything. However, with parts getting smaller and smaller, quantum physics is making things tricky.

In a nutshell, a transistor is just an electronic switch. Electricity is electrons moving from one place to another. So, a switch is a passage that can block electrons from moving in one direction. Today, a typical scale for transistors is 14 nanometers, which is about 8 times less than the HIV virus diameter and 500 times smaller than a red blood cell. As transistors are shrinking to the size of only a few atoms, electrons may just transfer themselves to the other side of a blocked passage via a process called Quantum tunneling.

In the quantum realm, physics works quite differently from the predictable ways we are used to and traditional computers just stop making sense. We are approaching a real physical barrier for our technological progress.

To solve this problem scientists are trying to use these unusual quantum properties to their advantage by building quantum computers. In normal computers, bits are the smallest unit of information. Quantum computers use qubits which can also be set to one of two values. A qubit can be any two-level quantum system such as a spin and a magnetic field or a single photon.0 and 1 are this system’s possible states. In the quantum world, the qubit doesn’t have to be one of those, it can be in any proportions of both states at once. This is called superposition. But as soon as you test its value, say by sending the photon through a filter, it has to decide either vertically or horizontally polarized. So as long as it's unobserved, the qubit is in a superposition of probabilities for 0 or 1 and we can’t predict which it will be.

But the instance you measure it collapses into one of the definite states. Superposition is a game-changer. Four classical bits can be in one of two to the power of four different configurations at a time. That is 16 possible combinations out of which you can use just one.

Four qubits in superposition can be in all of that 16 combinations at once. This number grows exponentially with each extra qubit. Twenty of them can already store a million values in parallel. A really weird and unintuitive property qubits can have is Entanglement, a close connection that makes each of qubits react to a change in the other state instantaneously no matter how far they are apart. This means when measuring just one entangled qubit, you can directly deduce the properties of its partners without having to look. Qubit manipulation is a mind-bender as well. A normal logic gate gets a simple set of inputs and produces one definite output. A quantum gate manipulates an input of superposition, rotates probabilities, and produces another superposition as its output. So a quantum computer sets up some qubits, applies quantum gates to entangle them and manipulate probabilities then finally measures the outcome, collapsing superpositions to an actual sequence of 0s and 1s. What this means is that you get the entire lot of calculations that are possible with your setup, all done at the same time. Ultimately you can only measure one of the results and it will only probably be the one you want, so you may have to double-check and try again.

But by cleverly exploiting superposition and entanglement, this can be exponentially more efficient than would ever be possible on a normal computer.

So, while quantum computers will not probably replace our home computers because in some areas they are vastly superior. One of them is database searching. To find something in a database a normal computer may have to test every single one of its entries whereas Quantum computer's algorithm needs only square root of that time which for large databases is a huge difference.

The most famous use of quantum computers is ruining IT security. Right now your browsing, email, and banking data are being kept secured by an encryption system in which you give everyone a public key to encode messages only you can decode. The problem is that this public key can actually be used to calculate your secret private key. Luckily, doing the necessary math on any normal computer would literally take years of trial and error.But a quantum computer with exponential speed-up could do it in a breeze.

Quantum computers have the potential to revolutionize computation by making certain types of classically intractable problems solvable. While no quantum computer is yet sophisticated enough to carry out calculations that a classical computer can’t, great progress is underway.

Thank you for spending your valuable time reading my blog. I truly appreciate it. Until next time!

Have a nice day!

CHEERS TO MORE READINGS!! 🥂

Comments

Popular posts from this blog

MULTIMEDIA

Exploring The Hidden Internet

SKINPUT TECHNOLOGY